Assessment of the agronomic value of solar-dried sludge and heavy metals bioavailability based on the bioaccumulation factor and translocation index

Author:

An-nori Amal,El Mejahed Khalil,Fels Loubna El,Touhami Driss,Ezzariai Amine,El Gharous Mohamed,Hafidi Mohamed

Abstract

This study aimed to assess the agronomic value of solar-dried sludge (SDS) and the transfer of Cr, Ni, Pb, and Cu to wheat (Triticum aestivum) and faba bean (Vicia faba). A greenhouse experiment was performed involving two rates of SDS (15 t/ha and 30 t/ha) from an activated sludge-based wastewater treatment plant. In addition to the single use of an SDS amendment, co-application of SDS and mineral fertilizers was also included to determine the best scenario resulting in high yields and less negative implications on the environment. Data for both wheat and faba bean showed that applying SDS at 30 t/ha led to competitive yields compared to the ones obtained previously, while 15 t/ha of SDS and mineral fertilizers were co-applied. The use of SDS increased soil organic matter, slightly decreased the pH value, and increased soil salinity. The contents of Ni, Cu, and Pb were not significantly affected by the application of SDS. Only Cr showed high soil concentrations in proportion to the increasing rates of SDS. The bioaccumulation of heavy metals in roots was more important in 30 t/ha than that in 15 t/ha amended soil. In the case of wheat, the bioconcentration factor (BCF) root values correspond to the following order: Cr (0.89) >Cu (0.85)> Ni (0.28)> Pb (0.22). In the case of faba bean, BCF roots were observed as follows: Cu (1.04 > Ni (0.37)> Cr (0.16)> Pb (0.15). Wheat excluded Cr, Ni, and Pb from the uptake by shoots, and Cu was translocated from roots to shoots with a percentage of 11% at 30 t/ha of applied SDS. Faba beans demonstrated more important values of HM’s translocation by respecting this order (Ni (37.7%) > cu (30.24%)> Cr (17.59%), while Pb was excluded from the translocation. No significant difference was observed regarding the translocation index when the sludge rate has been duplicated from 15 t/ha to 30 t/ha. Based on these outcomes, SDS used at the rate of 30 t/ha is the best scenario to amend the soil and provide nutrients to plants. Wheat is translocating less heavy metal to the edible part; it is, thus, the most suitable crop to be involved in the current context.

Funder

Université Mohammed VI Polytechnique

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference51 articles.

1. Transfer factor as indicator of heavy metals content in plants;Agic;Fresenius Environ. Bull.,2015

2. Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain;Albaladejo;J. Soils Sediments,2013

3. Phytotoxicity of chromium on germination, growth and biochemical attributes of Hibiscus esculentus L;Amin;Am. J. Plant Sci.,2013

4. Effects of solar drying on heavy metals availability and phytotoxicity in municipal sewage sludge under semi-arid climate;An-nori;Environ. Technol. Innov.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3