Spatiotemporal variation characteristics of hourly soil temperature in different layers in the low-latitude plateau of China

Author:

Cheng Qingping,Zhang Mingda,Jin Hanyu,Ren Yitong

Abstract

Soil temperature change has considerable impact on land surface energy and water balances, and hence on changes in weather/climate, surface/subsurface hydrology, and ecosystems. However, little is known regarding the spatiotemporal variations and influencing factors of changes in hourly soil temperature (depth: 5–320 cm) in low-latitude highland areas. This study analyzed the hourly soil temperature at each hour during 2004–2020 and at 08:00, 14:00, and 20:00 (Beijing Time) during 1961–2020. The results revealed the following. 1) As soil depth increased, average soil temperature increased in autumn and winter, and decreased annually and in spring and summer. It exhibited significant increase during 00:00–23:00 annually, seasonally, and monthly, especially at depths of 40–320 cm during 2004–2020. Average soil temperature increased at 08:00 and decreased at 14:00 and 20:00 with increasing soil depth, but the opposite trend was found annually, seasonally, and monthly at 08:00, 14:00, and 20:00 during 1961–2020. 2) With increasing elevation, average soil temperature decreased at 08:00, 14:00, and 20:00 at depths of 5–20 cm, and showed significant increase trend at 08:00 and 14:00 at depths of 10–20 cm (except at 14:00 at 10-cm depth). 3) At 5-cm depth, the critical accumulated soil temperature of ≥12°C and 14°C extended the potential growing season during 1961–2020. 5) Significant uptrend of hourly soil temperature annually, seasonally, and monthly potentially leads to additional release of carbon to the atmosphere and increased soil respiration, reinforcing climate warming. These findings contribute to better understanding of the variation of shallow soil temperatures and land–atmosphere interactions in low-latitude highland areas.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3