Farm-scale water-energy-food-waste nexus analysis for a closed-loop dairy system

Author:

Muell Jordan D.,Mohtar Rabi H.,Kan Eun Sung,Assi Amjad T.,Pappa Valentini

Abstract

Largely due to manure management, intensive livestock production is known to negatively impact air, water, and soil quality. Excessive manure is often applied to soil as fertilizer or stored in lagoon. However, some thermo-chemical methods, such as gasification and pyrolysis, can transform manure from waste into a valuable resource. The closed-loop dairy concept employs these methods to create biochar derived from cow manure for use as a soil amendment and a water filtration medium. This closed-loop concept has the potential to produce syngas and bio-oil for production of electricity, and to reduce excessive nutrients in liquid manure irrigation by filtering manure slurry stored in lagoons. It replaces solid manure with biochar in land applications to further reduce nutrient runoff and increase soil resilience against erosion. In this study, a Water-Energy-Food-Waste nexus-based analysis and resource allocation tool was developed to evaluate the economic, environmental, and social feasibility of the closed-loop dairy system. The tool utilizes several levers to simulate a user-specified dairy operation, such as number of livestock, acres farmed, quantity of effluent irrigation, distribution of manure and biochar products, and type of biomass conversions. Financial estimates from central Texas in 2018 were used to evaluate the profitability of these practices against the costs of a dairy and hay operation. The study showed that the closed-loop dairy system, while case dependent, could be profitable and, based on operational costs, a small dairy of approximately 200 cows could break even. Results also indicate that the benefits of biomass conversions to produce energy byproducts should increase with scale. This study can help many dairy farms that are considering the economic and environmental sustainability of the industry, which has been under scrutiny.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference34 articles.

1. FastCompany. The dairy of the future is A sustainable closed loop powered by cow poop AnzilottiE. 2017

2. The biochar option to improve plant yields: First results from some field and pot experiments in Italy;Baronti;Ital. J. Agron.,2010

3. Co-gasification of coal and hardwood pellets;Brar;A Case Study,2013

4. Review of fast pyrolysis of biomass and product upgrading;Bridgwater;Biomass Bioenergy,2012

5. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar;Cantrell;Bioresour. Technol.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3