Simulation and prediction of land use in urban agglomerations based on the PLUS model: a case study of the Pearl River Delta, China

Author:

Gong Jing,Du Hongyan,Sun Yong,Zhan Yun

Abstract

The Pearl River Delta (PRD) is a highly urbanized region in China that faces significant challenges in land use management. These challenges include the decrease in agricultural and ecological land resulting from rapid urbanization, the effectiveness of government governance, and the trajectory of development, all of which warrant careful research examination. Moreover, existing studies on land use in the PRD predominantly rely on static historical analysis, lacking a multi-scenario simulation approach. This study examines land use in PRD using a Patch-Generating Simulation (PLUS), from 1985 to 2020 to address this gap. Three scenarios were established to simulate potential land use outcomes in the PRD by 2030: spontaneous change, cropland protection, and ecological protection. The findings reveal that cropland, forest, and impervious surfaces are the dominant land use types in the PRD. From 1985 to 2020, the proportion of cropland decreased from 37.63% to 27.40%, with most conversions occurring to impervious surfaces and forest land. The proportion of impervious surfaces increased from 1.81% to 12.57%, primarily from conversions of cropland, forest, and water bodies. Economic development, population growth, accessibility, climatic factors, and topographic conditions were shown to be the primary determinants of land use in the PRD. Modelling results suggest that under the spontaneous change scenario, cropland and ecological land decrease, while impervious surfaces expand significantly, threatening cropland preservation and ecological construction. However, under the cropland protection scenario, the conversion rate of cropland to other land types can be effectively controlled, contributing to efficient preservation. Under the ecological protection scenario, impervious infrastructure encroachment on ecological land can be mitigated, but cropland protection is limited. The study proposes cropland protection and ecological priority policies to optimize the structure of land use, enhance efficiency, and offer policy guidance for the efficient utilization of land resources and the preservation of the ecological environment in the PRD.

Funder

Beijing Academy of Agricultural and Forestry Sciences

Guangdong Office of Philosophy and Social Science

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3