Constructed Wetlands for Reclamation and Reuse of Wastewater and Urban Stormwater: A Review

Author:

Biswal Basanta Kumar,Balasubramanian Rajasekhar

Abstract

In recent years, increasing attention has been given for reclamation and reuse of water (wastewater and stormwater) in the context of augmenting water supplies. Constructed wetland (CW) systems make use of natural substrates, plants, and microbes for decontamination of wastewater and stormwater. These nature-based water treatment systems are cost-effective and sustainable. This review critically analyzes the recent advances on the application of CW systems for removal of total suspended solids (TSS), various chemical (nutrients including total nitrogen and total phosphorus, heavy metals, and organics) and microbial pollutants (Escherichia coli, enterococci, fecal coliforms, etc.) in wastewater and stormwater. Furthermore, the influence of key factors including CW configurations, substrates, vegetation, ambient temperature/seasonal changes, oxygen levels and hydraulic retention time on the performance of CW systems are discussed. Insights into various pollutant removal mechanisms, microbial diversity and modeling (kinetics, hydrological and mechanistic) are provided. CW systems show good performance for removal of diverse pollutants from wastewater and stormwater. The pollutant removal mechanisms include physical (sedimentation and filtration), chemical (sorption, complexation and precipitation) and biological (biodegradation, microbial transformation and microbial/plant assimilation) processes. The dominant microbial communities enriched in CW systems include nitrifiers, denitrifiers and organic biodegraders. The key knowledge gaps in the development of multifunctional CW systems are highlighted. We believe that this critical review would help urban planners, environmental engineers and managers with implementation of innovative strategies for wastewater and stormwater reclamation and reuse to alleviate water stress in urban areas and to contribute to environmental sustainability. Moreover, this review would help to optimize the performance of CW systems as well as to develop regulatory guidelines for installation, operation and maintenance of CW systems.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3