Dynamics of trace and rare earth elements during long-term (over 4 years) decomposition in Scots pine and Norway spruce forest stands, Southern Sweden

Author:

Gautam Mukesh K.,Berg Björn,Lee Kwang-Sik,Nilsson Torbjörn,Shin Hyung Seon

Abstract

The temporal dynamics of 33 major, trace, and rare earth elements (REEs) were studied in the litter samples containing Swedish Norway spruce (Picea abies) (NSL) and Scots pine (Pinus sylvestris) (SPL), with the aim to assess their release and accumulation dynamics. Litter bags (8 × 8 cm) were incubated in paired monoculture stands with both the species for up to 5 years from 1979 to 1984 according to a randomized block design comprising 25 blocks (1 × 1 m) within an area of 625 m2. The decomposition rate was slightly higher for Scots pine litter (k = 0.315) than for Norway spruce litter (k = 0.217). During litter decomposition, at ∼70% accumulated mass loss (AML), the concentration of trace elements increased by >50% in both litter types compared to initial concentrations. The concentration change took place in a non-linear pattern, and polynomial quadratic regression between concentration change and accumulated mass loss resulted in significant relationships (adj R2 = 0.20–0.97; p = 0.15–<0.0001). The changes in concentration and amount of trace elements resulted in two main types of dynamics: 1) both concentration and amount increased for Fe, Al, Ti, Cu, Mo, V, Zr, Sb, As, Cs, Pb, Th, and U; 2) concentration increased but amount decreased for Ni, Zn, Li, and Sr. The amount of REEs increased from ∼3-fold to 99-fold from the beginning to the end of incubation, suggesting accumulation during litter decomposition. The dynamics of different REEs were similar in their change patterns in the two litters. Different REEs had generally identical change patterns during incubation, which is reflected in the high correlations among them (r2 = >0.95). A general upward convexity in the dynamics suggests that if further incubated in the field, decomposing litter could have accumulated more REEs in the organic matter. The results of this study can be useful for future studies in other ecosystems including metal-contaminated sites or element-depleted sites. Plant litter accumulation, its decomposition, and build-up of humic substances in the decomposing organic matter can act as a sink for elements and can be used as a management tool for ecological amelioration of metal-contaminated sites as well as natural systems that are impoverished, especially recuperating sites. The study’s findings have implications beyond such sites and can be useful in any research that seeks to understand the patterns of accumulation and release related to decomposition in different ecosystems.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3