Nickel Ore Mining Waste as a Promising Source of Magnesium and Silicon for a Smart-Agricultural Management

Author:

Crusciol Carlos A. C.,de Campos Murilo,Momesso Letusa,Bossolani Joao W.,Moretti Luiz G.,Portugal Jose R.,de Melo Carlos V. C. B.,Calonego Juliano C.

Abstract

Thermomagnesium (TM), a byproduct of Ni ore mining, can be processed as a clean alternative to conventional fertilizers as a source of magnesium (Mg) and silicon (Si) for agriculture. TM positively impacts soil properties and provides nutrients that are available for uptake by plants; however, information on the effects of TM on plant physiology in cropping systems is limited. This study aimed to evaluate the impact of increasing doses of TM on crop yield; soil chemical attributes; and leaf contents of Mg, Si, reducing sugars, sucrose, and starch in a soybean-maize crop rotation system. The study was performed under rainfed conditions during three consecutive crop seasons in 2018/2019 (soybean), 2019 (maize), and 2019/2020 (soybean). Six TM doses (0, 350, 700, 1050, 1400, 1750 kg ha−1) with four replicates were applied prior to the first season. Responses to the application of TM were observed up to the highest doses (1,400 and 1750 kg ha−1), with increases in soil concentrations of Mg and Si, soil pH, leaf pigments, gas exchange parameters, and carbohydrate concentrations but decreases in starch content. The increases in photosynthetic rates and carbohydrate partitioning led to increases in the weight of 100 grains (W100G) and grain yield (GY). W100G increased by 11% in soybean at a TM dose of 1,050 kg ha−1 and 23% in maize at a TM dose of 1,400 kg ha−1 dose. For both crops, the greatest increases in GY were obtained at a TM dose of 1,050 kg ha−1, with increases of 1,068 and 3,658 kg ha−1 for soybean and maize, respectively, compared with the control. Therefore, TM can be used in agricultural systems as a viable source of Mg and Si and as soil acidity amendment to promote sustainable agriculture.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference52 articles.

1. Mechanisms of Silicon-Mediated Alleviation of Heavy Metal Toxicity in Plants: A Review;Adrees;Ecotoxicol. Environ. Saf.,2015

2. Köppen's Climate Classification Map for Brazil;Alvares;Meteorol. Z.,2013

3. Leguminosas e oleaginosas;Ambrosano,1997

4. Lime and Calcium-Magnesium Silicate in the Ionic Speciation of an Oxisol;Antonangelo;Sci. Agric. (Piracicaba, Braz.),2017

5. Lime Effects in a No-Tillage System on Inceptisols in Southern Brazil;Auler;Geoderma Reg.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3