Projections of flood regime changes over the upper-middle Huaihe River Basin in China based on CMIP6 models

Author:

Bian Guodong,Zhang Jianyun,Song Mingming,Qian Xin,Guan Tiesheng,Wang Guoqing

Abstract

Introduction: Climate change alters the hydrological cycle to different extents, in particular the intensification of extreme precipitation and floods, which has garnered more attention as a significant scientific issue in the last few decades. The last Coupled Model Inter-comparison Project 6 (CMIP6) was designed with new shared socioeconomic pathways (SSPs) to combine socioeconomic development with greenhouse gas emissions to project future climate.Method: In this study, we used 22 global climate models (GCMs) from CMIP6 to investigate future variations in extreme precipitation and temperature under SSP2-4.5 and SSP5-8.5 scenarios over the upper-middle Huaihe River Basin (UMHRB). Then, the modified Xinanjiang model integrating the flood control module was driven to obtain projections of the daily streamflow and to evaluate the future variations in flood regimes.Results: The results show that 1) the characteristics of future extreme precipitation, such as the average intensity and amount of annual precipitation and extreme precipitation, are projected to increase, and the average, maximum, and minimum temperature values also display substantial increasing trends in the future over the UMHRB; 2) warmer climate will lead to a more severe flood magnitude under the SSP5-8.5 scenario in the far future (2071–2100) over the UMHRB. The results of the multi-model ensemble show that the annual maximum flood peaks (15-day flood volumes) of Wangjiaba and Wujiadu stations are projected to increase by 46.4% (43.1%) and 45.4% (51.1%), respectively, in the far future (2071–2100) under the SSP5-8.5 scenario; and 3) variations in the flood frequency tend to resemble variations in flood magnitude, and the return period of the design flood will obviously decrease under future climate scenarios. For instance, in the far future, under SSP5-8.5 scenarios, the return period of the design flood with a 100-year return period will become 38 years and 31 years for Wangjiaba and Wujiadu stations, respectively.Discussion: The study enhances a more realistic understanding that the occurrence of future extreme precipitation and floods is projected to be more frequent and severe, thereby resulting in an urgent imperative to develop pertinent adaptation strategies to enhance social resilience toward the warming climate.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3