Efficiency of Carbon-Based Electrodes on a Microbial Electrolysis System for the Treatment of Bilge Water

Author:

Gatidou Georgia,Constantinou Marios,Koutsokeras Loukas,Vyrides Ioannis,Constantinides Georgios

Abstract

A coupled Microbial Electrolysis Cell (MEC) – Anaerobic Granular Sludge (AGS) system was settled to investigate for the first time the ability of various carbon-based electrodes to enhance biodegradation of real bilge water (BW) and increase methane generation as an emerging technology for converting organic matter into value-added products. Results revealed that the performance of the three types of electrodes named carbon foam (CF), carbon cloth (CC) and three-dimensional graphene foam (3DG), was both time and organic load content dependent during the experimental cycles. Cumulative CH4 generation reached 235 mL in just 13 days after feeding the AGS with 50% of BW and application of 1.0 V at 3DG electrodes, followed by CC electrodes (148.3 mL). CF proved to be more resistant in higher BW concentration showing a sufficient performance of 1 month. However, in the third cycle, the performances of MECs containing 3DG and CC were higher compared to the CF and the control. Over the first cycle, the soluble Chemical Oxygen Demand (sCOD) removal was found to be around 70% to all MECs, and this value was around 10% higher than the control. Among the different Volatile Fatty Acids (VFAs), acetic acid was identified in the highest concentration in the first cycle, whereas propionic acid was detected in the second and third cycles. Microbial profile analysis showed that Methanobacterium and Desulfovibrio had substantially higher abundances in the cathodes than in the suspended anaerobic sludge. An X-ray diffraction (XRD) investigation of the used electrodes pointed out the formation of various crystalline compounds on their surface, which were different for the anode and cathode.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3