Successional Herbaceous Species Affect Soil Processes in a High-Elevation Alpine Proglacial Chronosequence

Author:

Mainetti Andrea,D’Amico Michele,Probo Massimiliano,Quaglia Elena,Ravetto Enri Simone,Celi Luisella,Lonati Michele

Abstract

The study investigated plant-soil interactions along a proglacial chronosequence in the Italian Alps, with a specific focus on pioneer and grassland species structure and biogeochemical processes, with the aim to evaluate the biotic patterns in ecosystem development. We recorded vascular plant frequencies and the mean diameter of one pioneer and one grassland target species in 18 permanent plots distributed along six different stages encompassing a 170-years chronosequence in the Lauson Glacier forefield (NW Italy). We evaluated the main soil properties and measured the C:N:P stoichiometry in the biomass of pioneer and grassland target species and in the underlying soil. For comparative purposes, we analyzed also bare soils sampled near the sampled plant individuals. Pioneer species number and cover significantly increased 10 and 40 years after deglaciation respectively, while alpine grassland species cover and number peaked only after 65 and 140 years, respectively. Along the chronosequence, soils beneath vascular plants were enriched in nutrients, especially under individuals of alpine grassland species, with total organic C contents ranging between 1.3 and 8.9 g·kg−1 compared to 0.2 and 3.3 g·kg−1 in bare soils. Nitrogen content in bare soils was nearly undetectable, while it increased in the plant-affected soils, leading to a more balanced C:N:P stoichiometry in the oldest stages. The colonization of alpine grassland species started immediately, although species number and cover increased only when the soil acquired sufficient nutrient supply and functionality. Although the ecosystem remained C and N limited, the soil could provide adequate conditions for more competitive species establishment, as confirmed by the increasing number and cover of alpine grassland species. Thus, soil nutrient dynamics were strongly influenced by plants, with a major influence triggered by late-successional grassland species.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference90 articles.

1. Chemical weathering in the foreland of a retreating glacier;Anderson;Geochem. Cosmochim. Acta,2000

2. Chemical weathering in glacial environments;Anderson;Geology,1997

3. Vegetation and environmental factors during primary succession on glacier forelands: some outlines from the Italian Alps;Andreis;Plant Biosyst.-Int. J. Deal. Asp. Plant Biol,2001

4. An updated checklist of the vascular flora native to Italy;Bartolucci;Plant Biosyst.- Int. J. Deal. Asp. Plant Biol,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3