Interactive effects of benthivorous fish disturbance and ammonium loading on two submersed macrophytes of contrasting growth forms based on a mesocosm study

Author:

Yu Qing,Wang Haijun,Liu Miao,Xu Chao,Ma Yu,Guo Weihua,Jeppesen Erik

Abstract

Benthivorous fish disturbance and nitrogen loading are two important factors that influence the community structure of submersed macrophytes, but their interactive effect is not well elucidated. We conducted an outdoor mesocosm experiment to examine the individual and combined effects of these two factors on the growth of two submersed macrophytes of different growth forms, i.e., the rosette-forming Vallisneria natans and the canopy-forming Myriophyllum spicatum. The treatments involved two levels of fish (Carassius auratus) disturbance crossed with two levels (0 and 12 g NH4Cl per month) of ammonium (NH4+-N) loading. For M. spicatum, we found that maximum height (MH) was reduced by 30.7%, 26.4%, and 51.0% in fish addition alone (F) and nitrogen addition treatments (N, F + N), respectively, compared with the control (C) treatment. The density of M. spicatum declined by 20%, 62% and 68.8% in the F, N and F + N treatment. The above-ground biomass (AGB) of M. spicatum respectively reduced by 56.7%, 94%, and 96.5% in the F, N and F + N treatments, and the roots/shoots ratio (R/S) increased by 114%, and 176% in N and N + F treatments, respectively. Regarding V. natans, only the MH in the N treatment was reduced (71.9%), and the density exhibited a reduction of 59.1% and 64.5% in the N and F + N treatments, respectively. The AGB of V. natans was significantly lower in the N (90.3%) and N + F (78.4%) treatments compared with the C treatment, while increased by 60.3% in F treatment. The R/S of V. natans increased by 227%, and 74.4% in the N and F + N treatments compared with the C treatment. The interactive effect of fish disturbance and high N on MH and AGB of V. natans and density of M. spicatum were antagonistic. However, the interactive effect on density and BGB of V. natans and AGB of M. spicatum were negatively synergistic. Moreover, fish activity significantly increased the concentration of total suspended solids (TSS) in the water, while total nitrogen (TN), ammonium, total phosphorus (TP), light, pH and salinity were unaffected. When fish and nitrogen were combined, TN, TP, TSS and salinity increased significantly, while pH decreased. Our study reveals that the interactive effects of fish disturbance and high N are synergistic and/or antagonistic, suggesting that the same stressor interaction may vary from synergistic to antagonistic depending on the response variables and growth forms of the macrophytes examined. Our study contributes to the understanding of how different factors can interact with each other and affect submersed macrophytes in aquatic ecosystems. This is timely and relevant knowledge, considering the range of multiple stressors involved in the decline of aquatic ecosystems worldwide at present.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3