Water resources optimal allocation model for coordinating regional multi-level water resources managers’ interests

Author:

Zhang Shiwei,Fang Guohua,Zhang Dasheng,Ju Maosen,Zhong Huayu

Abstract

In water resources management on a global scale, it is important to reconcile the conflicting interests of different regions and actors regarding water use. To solve this issue more effectively, an optimal allocation model of water resources that coordinates the interests of regional multi-level water resource managers and balances the benefits acquired by regional multi-level water resource managers was proposed. The model consisted of three components, including option generation, option selection, and fallback bargaining. The Hybrid Strategy Whale Optimization Algorithm (HSWOA) was created to generate the initial alternative set throughout the alternative generation process. In the alternative screening process, quick non-dominated sorting was used to choose Pareto alternatives from the initial alternative set. Through many rounds of negotiations, water resource managers at all levels reached a consensual water resource allocation plan during fallback bargaining. This model was used to reconcile the conflicting water interests of municipal and county water managers in Handan, China, in terms of economic, social, and ecological benefits. It was also compared with the Pareto solution set obtained from NSGA-III. In terms of convergence speed and accuracy, the results demonstrated that HSWOA outperformed the Whale Optimization Algorithm (WOA). The results show that several rounds of discussions between municipal and county water management eventually resulted in Nash equilibrium. In normal flow year, the recommended scheme could yield economic benefit of 315.08×108 Yuan, social benefit of 0.1700, and ecological benefit of 5.70 × 106 m3, whereas in low flow year, the recommended scheme could yield economic benefit of 354.85×108 Yuan, social benefit of 0.2103, and ecological benefit of 57.82 × 106 m3. Compared to existing studies, the recommended scheme has clear advantages in terms of social and ecological benefits. The proposed optimal water resource allocation was Pareto optimal. This paper presented a new way of thinking about reconciling the conflicting interests of different levels of water resource managers in the process of water allocation.

Funder

Hebei Provincial Key Research Projects

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3