Current status and research trends of textile wastewater treatments—A bibliometric-based study

Author:

Halepoto Habiba,Gong Tao,Memon Hafeezullah

Abstract

While introducing new technology has completely transformed the textile production process, the rapid pace of massive industrialization has increased the volume of wastewater, which is highly hazardous. Even though the textile industry is essential to our economy, the textile industry is harmful to the environment because of the production of wastewater, solid wastes, air pollutants, noise, etc. Recycling textile wastewater is crucial, and oxidation, physical, biological, and physicochemical methods can be used to treat textile wastewater. Based on statistics and visualization tools, bibliometric analysis has evolved to demonstrate a given topic’s knowledge structures and developmental tendencies. Here we provide a bibliometric analysis focused on textile wastewater treatment from 1990 to 2022. Raw data was retrieved from the Web of Science (WoS) database and mapped using VOSviewer and biblioshiny. Textile, wastewater, and treatment were keywords. We retrieved 8,170 documents, 1,138 sources published these documents, a 22.7% annual increase, where 21458 authors published these documents with an average citation rate of 33.2%, and there were 6,680 research articles and 462 review articles. DESALINATION AND WATER TREATMENT stayed on top with 422 publications. We discovered that DONGHUA UNIVERSITY ranks first with 330 publications. Though China took first place with a total of 43961 citations, followed by India with a total of 33953 citations, from a total of 120 countries participating in this research, the research work of CRINI G and coworkers was most cited globally. The most common term was wastewater, which occurred 3,144 times, followed by textile, which appeared 2,669 times. We expect this research to be a significant resource for scholars by comprehensively describing the current state and future directions of textile wastewater treatment.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference75 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3