Responses of ozone concentrations to the synergistic control of NOx and VOCs emissions in the Chengdu metropolitan area

Author:

Du Xiaohui,Tang Wei,Zhang Zhongzhi,Chen Junhui,Han Li,Yu Yang,Li Yang,Li Yingjie,Li Hong,Chai Fahe,Meng Fan

Abstract

Simulations of 108 emission reduction scenarios for NOx and VOCs using Comprehensive Air Quality Model with Extensions (CAMx) were conducted for eight cities in the Chengdu metropolitan area (CMA). The isopleth diagrams were drawn to explore the responses and differences of ozone (O3) concentrations to NOx and VOCs emission changes under Chengdu, CMA and Sichuan Province emission reduction scenarios. The results show that the O3-sensitive regimes of eight cities may change under different emission reduction scenarios. Under Chengdu emission reduction scenario, the Chengdu city is in the transition regime and O3 formation will shift from transition to VOC-limited when the VOCs emissions decreased by 50%, and the decreases in O3 concentrations caused by VOCs emission reductions are small. For the CMA and Sichuan Province emission reduction scenarios, all cities are NOx-limited in the baseline cases and with at least a 66% and a 77% reduction in NOx emissions, respectively, the daily maximum 8-h average O3 (MDA8) can attain the O3 standard (160 μg m−3). Although reductions in VOCs emissions can also lessen the O3 concentration, the effectiveness is relatively small. The changes in O3 concentrations under different VOCs to NOx emission reduction ratios indicate that all cities achieve a relatively high O3 concentration decrement with low VOCs to NOx emission reduction ratios and that the decreasing O3 concentrations caused by non-local emission reductions are much higher than those achieved by local emission reductions. In addition, the decreases in O3 concentrations in Chengdu are quite close when the total NOx and VOCs emissions reduction percentages are less than 30% under the CMA and Sichuan emission reduction scenarios.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3