Shift of combined ecotoxicity index in petroleum polluted soils during a bacterial remediation

Author:

Chai Xiaoyun,Wang Mutian,Fu Xiaowen,Zhang Wen,Huang Yujie,Germaine Kieran J.,Wang Jianing

Abstract

Introduction: Bioremediation has been shown to be an effective strategy for removing toxic pollutants from the environment, particularly organic chemicals such as petroleum hydrocarbons. This paper investigates the changes in toxicity of petroleum-contaminated soil as a result of microbial remediation processes.Methods: Changes in the ecotoxicity of the contaminated soil were examined using a plant, earthworm, enzyme activity and luminescent bacteria toxicity tests.Results: The results showed that bioremediation could effectively degrade petroleum hydrocarbon (C10–C40) pollutants. After 42 days of remediation, the petroleum hydrocarbon (C10–C40) content of Group A (bioaugmented polluted wetland soil) decreased from 1.66 g/kg to 1.00 g/kg, and the degradation rate was 40.6%. The petroleum hydrocarbon (C10–C40) content of Group B (bioaugmented polluted farmland soil decreased from 4.00 g/kg to 1.94 g/kg, and the degradation rate was 51.6%. During the microbial remediation progress, the ecological toxicity of petroleum-contaminated soil first increased and then decreased. The photosynthetic pigment content index in the higher plant toxicity test, the earthworm survival index and the soil catalase activity all showed good agreement with the relative luminescence index of extracted DCM/DMSO in the luminescent bacterial toxicity test. The soil toxicity decreased significantly after remediation. Specifically, the photosynthetic pigment content of wheat were inhibited in the soil during the whole process (remediation for 42 days), and decreased to the minimum on remediation day 21. The 7-day and 14-day survival rate of earthworms in Group A and Group B gradually decreased in the soil remediation process, and then gradually increased, survival rate at the end of remediation was higher than at the beginning. Soil catalase activity was significantly negatively correlated with petroleum hydrocarbon (C10–C40) content (−0.988, −0.989). The ecological toxicity of contaminated soil reached to the maximum on the 21st day of remediation, relative luminosity of luminescent bacteria in dichloromethane/dimethyl sulfoxide extracts from Group A and Group B were 26.3% and 16.3%, respectively.Conclusion: Bioremediation could effectively degrade petroleum hydrocarbon (C10–C40) pollutants. Wheat photosynthetic pigment content, earthworm survival rate, soil catalase activity and relative luminescence of luminescent bacteria can better indicate the ecological toxicity of petroleum-contaminated soil in bioremediation process.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3