Pesticides are Substantially Transported in Particulate Phase, Driven by Land use, Rainfall Event and Pesticide Characteristics—A Runoff and Erosion Study in a Small Agricultural Catchment

Author:

Commelin Meindert C.,Baartman Jantiene E. M.,Zomer Paul,Riksen Michel,Geissen Violette

Abstract

Agriculture on sloping lands is prone to processes of overland flow and associated soil detachment, transportation, and deposition. The transport of pesticides to off-target areas related to runoff processes and soil erosion poses a threat of pollution to the downstream environment. This study aimed to quantify transport of pesticides both dissolved in water and in the particulate phase in transported sediments. Particulate phase transport of pesticides on short temporal time scales from agricultural fields is scarcely studied. During two growing seasons (2019 and 2020) rainfall—runoff events were monitored in a catchment of 38.5 ha. We selected 30 different pesticides and one metabolite based on interviews with the farmers on the application pattern. Concentrations for these 31 residues were analyzed in runoff water (dissolved phase–DP) and sediment (particulate phase–PP) and in soil samples taken in the agricultural fields. In all runoff events active substances (AS) were detected. There was a clear difference between DP and PP with 0–5 and 8–18 different AS detected in the events, respectively. Concentrations in PP were higher than in DP, with factors ranging from 12 to 3,700 times. DP transport mainly occurs in the first days after application (69% within 10 days), and PP transport occurs over the long term with 90% of transported mass within 100 days after application. Potato cultivation was the main source of runoff, erosion, and pesticide transport. Cereals and apples with grassed inter-rows both have a very low risk of pesticide transport during overland flow. We conclude that for arable farming on sloping lands overland transport of pesticide in the particulate phase is a substantial transport pathway, which can contribute to pollution over longer time periods compared to transport in water. This process needs to be considered in future assessments for pesticide fate and environmental risk.

Funder

Horizon 2020

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3