Construction of an ecological security pattern for the Guanzhong Plain urban agglomeration: Scale perspective and hierarchy demand

Author:

Ye Hao,Song Yongyong,Xue Dongqian,Xia Siyou,Tang Yu,Zhang Liwei

Abstract

As areas of dense populations and high economic activity, urban agglomerations have driven an overall increase in economic efficiency; however, the associated ecological risks are becoming increasingly apparent. The construction of ecological security patterns (ESPs) is an important approach for ensuring the ecological security of urban agglomerations, thereby achieving coordinated development of society, economy and ecology. Previous studies on ESPs have rarely considered the demand for ecosystem services at multiple scales and have accordingly failed to accurately identify important ecological sources. Here, we propose a novel method based on multi-scale ecosystem service demand to identify ecological sources, which can more accurately identify the ecological source meeting the regional sustainable development. Selecting the Guanzhong Plain urban agglomeration (GPUA) as study area, we constructed a resistance surface by comprehensively considering natural and anthropogenic disturbances. We found high resistance areas are mainly concentrated in highly urbanized areas with Xi’an as the core. In addition, we performed minimum cumulative resistance and gravity model to obtain and classify ecological corridors. The results revealed that the ecological sources identified in this study can enhance the connectivity of the inner regions of the GPUA and the linkage between north and south ecological corridors. The ecological sources were found to be concentrated in the southern Qinling Mountains, with an area of 28,780.02 km2, accounting for 26.85% of entire region. Furthermore, we identified 121 potential ecological corridors, 47 ecological nodes, and 49 ecological breakpoints, and established that the extent of land with a high level of ecological security accounts for 21.98% of the entire regional area. This study offers a new perspective for ESPs construction, which can provide a scientific basis and policy guidance for the optimization of spatial structure and the maintenance of ecological security in ecologically fragile urban agglomerations.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3