Soil aggregate structure, stability, and stoichiometric characteristics in a smelter-impacted soil under phytoremediation

Author:

Xu Lei,Xing Xiangyu,Bai Jingfeng,Li Ding

Abstract

Smelter-impacted soils often result in soil degradation and the destruction of the soil structure. Although soil aggregate typically plays a crucial role in soil structure, the influence of phytoremediation on soil aggregate structure stability and stoichiometric characteristics remains unclear. To study the influence of phytoremediation on soil aggregate structure, stability and stoichiometric characteristics, a 3-year in situ experiment was conducted. After hydroxyapatite was applied, Elsholtzia splendens, Sedum plumbizincicola, and Pennisetum sp. were planted in a smelter-impacted soil. After 3 years, the soil aggregate structure, stability, and stoichiometric of chemical elements were analyzed. The results showed that the three phytoremediation treatments increased the content of >0.25 mm mechanically-stable (DR0.25) and water-stable (WR0.25) aggregates by 6.6%–10.4% and 13.3%–17.5%, respectively. Aggregate mean weight diameter (MWD), geometric mean diameter, and aggregate stability rate (AR, %) were significantly increased, and the soil mechanically stable aggregate fractal dimension (D) was significantly reduced after the 3-year remediation. Soil total nitrogen and phosphorus in aggregates with different particle sizes were significantly increased by 11.4%–46.4% and 107%–236% after different plant treatments. For the stoichiometric characteristics of the aggregates, the combined remediation only significantly reduced the value of N:P and C:P in different particle size aggregates and had no significant effect on the C:N in all particle size aggregates. Meanwhile, the combined remediation of hydroxyapatite and Elsholtzia splendens, Sedum plumbizincicola, and Pennisetum sp. in heavy metal heavily contaminated soil could reduce the availability of Cu and Cd by 54.1%–72.3% and 20.3%–47.2% during the 3 years, respectively. In summary, this combined remediation method can be used for the remediation of farmland that is contaminated by heavy metals.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3