Remote sensing-based estimation of precipitation data (2000-2015) in Ecuador's Loja province

Author:

Valverde Luis,Álvarez César Iván,Gualotuña Dayana

Abstract

The primary climatic parameter frequently scrutinized in water balance assessments for water utilization is precipitation. Given its considerable variability across locations and over time, it is imperative to rely on high-quality statistical information to facilitate accurate analyses. This study aims to refine the estimation of precipitation data by enhancing information obtained from freely accessible satellite sensors with data collected from established observation stations. Monthly precipitation data spanning from 2000 to 2015 were gathered from 24 stations. Three distinct methodologies were employed to adjust individual station data to address missing data. Consistency analysis and data refinement were conducted for stations requiring adjustments, utilizing graphical analysis and non-parametric statistical techniques. The satellite products under evaluation correspond to the IMERG v6 algorithm. Subsequently, statistical metrics were used to compare observed and estimated data. A correction coefficient was computed by aligning monthly means between observed and calculated data to mitigate random and systemic errors. The IMERG algorithm demonstrates proficiency in accounting for altitude and seasonal variations, with the adjustment significantly enhancing its performance under these conditions.

Publisher

Frontiers Media SA

Reference36 articles.

1. Vulnerabilidad Al cambio climático en La región sur del Ecuador: potenciales impactos en los ecosistemas;Aguirre,2015

2. Assessment of remote sensing data to model PM10 estimation in cities with a low number of air quality stations: a case of study in quito, Ecuador;Alvarez-Mendoza;Environments,2019

3. Evaluación de Imágenes Satelitales de Precipitación GPM (Global Precipitation Measurement) a Escala Sub-Diaria Para La Provincia Del Azuay AndradeO. 2016

4. Métodos No-Paramétricos de Uso Común;Badii;Daena Int. J. Good Conscience,2012

5. Clasificación de Pruebas No Paramétricas. Cómo Aplicarlas;Berlanga;Rev. d’Innovació i Recer. En. Educ.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3