Understanding requirements, limitations and applicability of QSAR and PTF models for predicting sorption of pollutants on soils: a systematic review

Author:

Neira-Albornoz Angelo,Martínez-Parga-Méndez Madigan,González Mitza,Spitz Andreas

Abstract

Sorption is a key process to understand the environmental fate of pollutants on soils, conduct preliminary risk assessments and fill information gaps. Quantitative Structure-Activity Relationships (QSAR) and Pedotransfer Functions (PTF) are the most common approaches used in the literature to predict sorption. Both models use different outcomes and follow different simplification strategies to represent data. However, the impact of those differences on the interpretation of sorption trends and application of models for regulatory purposes is not well understood. We conducted a systematic review to contextualize the requirements for developing, interpreting, and applying predictive models in different scenarios of environmental concern by using pesticides as a globally relevant organic pollutant model. We found disagreements between predictive model assumptions and empirical information from the literature that affect their reliability and suitability. Additionally, we found that both model procedures are complementary and can improve each other by combining the data treatment and statistical validation applied in PTF and QSAR models, respectively. Our results expose how relevant the methodological and environmental conditions and the sources of variability studied experimentally are to connect the representational value of data with the applicability domain of predictive models for scientific and regulatory decisions. We propose a set of empirical correlations to unify the sorption mechanisms within the dataset with the selection of a proper kind of model, solving apparent incompatibilities between both models, and between model assumptions and empirical knowledge. The application of our proposal should improve the representativity and quality of predictive models by adding explicit conditions and requirements for data treatment, selection of outcomes and predictor variables (molecular descriptors versus soil properties, or both), and an expanded applicability domain for pollutant-soil interactions in specific environmental conditions, helping the decision-making process in regard to both scientific and regulatory concerns (in the following, the scientific and regulatory dimensions).

Funder

Universität Konstanz

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3