New techniques for old fires: Using deep learning to augment fire maps from the early satellite era

Author:

Boothman Rylan,Cardille Jeffrey A.

Abstract

Disturbances such as fire play a critical role in forest ecosystems. However, anthropogenic fires can profoundly impact forests to the point of destabilizing ecosystems. In addition, fires have legacy effects on environments which may be observed in forests for decades after the fire is extinguished. Thus, understanding the extent of historic fires in a landscape is vital to understanding current forest structure and ecological processes (e.g., carbon sequestration capacity and provision of habitat) and, therefore, essential for informing land-management decisions. However, little work has been done to map forest fires pre 1980s due to the challenges of interpreting imagery from the 1970s-era Landsat Multispectral Scanner (MSS) platform. MSS imagery is distinguished from recent satellite missions through lower temporal, spatial, and spectral resolutions. Recent advances in image processing have brought the goal of high-quality MSS classifications within reach. In this study, we use deep learning, specifically UNet (a fully convolutional neural network (CNN)), to detect historic forest fires in MSS imagery for the forest-dominated regions of Quebec, Canada. While other studies have applied deep learning to present-day satellite data for land cover classification, hardly any work has specifically applied deep learning to MSS data for fire detection. We trained our UNet model on 206 MSS images that were labelled by applying thresholds to the Burned Area Index inside polygons drawn by the authors around burned areas. We then used the trained model to label burns in 5104 MSS images that were compiled to generate annual burned area maps. Our results identified (with a 95% confidence interval) 3503.95 ± 484.90 km2 of burns not previously reported in any database; this represents a 35.30 ± 3.94% increase in the total known burned area across the forest-dominated regions of Quebec between 1973 and 1982.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3