Effect of tillage management on the wind erosion of arable soil in the Chinese Mollisol region

Author:

Chen Shuai,Zhang Xingyi,Li Jianye,Guo Mingming,Hu Wei

Abstract

Wind erosion is a serious problem in agricultural regions and threatens the regional food production in Northeast China. However, limited information is available on the characteristics of wind erosion in arable soil in Northeast China. As a result, field-based research during periods of vulnerability to wind erosion is essential. This study quantified the characteristics of soil wind erosion under no-tillage (NT) and conventional tillage (CT) treatments in China’s northern “corn-belt.” The results determined the wind erosion transport mode of Mollisols to be generally characterized by creep and supplemented by saltation and suspension in Northeast China. The erodible particles of the creep accounted for 80.37% and 85.42% of the total wind erosion under the NT and CT treatments, respectively. During experiments with erodible particles in the saltation mode from the soil surface to 2 m, the majority of the particles were collected by the sampler at 0.5 m height, with the NT and CT treatments collecting 5.82 kg·m−2 and 6.93 kg·m−2 of erodible particles per unit area, respectively. Wind erosion on agricultural land was observed to be influenced by tillage practices, rainfall, wind speed, and soil moisture content. Average and maximum wind speeds exhibited significant positive correlations with wind erosion during April and May. Moreover, the erodible particles of each wind erosion transport mode (creep, saltation, and suspension) under CT were higher (1.73, 1.41, and 1.35 times) than those under the NT treatment. With less damage and greater protection of the surface soil, the NT treatment was able to decrease the occurrence of wind erosion and influence its outcome on farmland. Therefore, NT treatment should be encouraged as a key initiative for the reduction of wind erosion of arable soil in the Chinese Mollisol region.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3