Evaluation of heavy metal fixation ability from drilling waste of oil and gas wells using treated sugarcane bagasse

Author:

Saffarian Farhad,Hosseini Seyed Ahmad,Mohammadi Roozbahani Maryam,Etminan Alireza

Abstract

IntroductionThe drilling industry is one of the main sectors of the oil industry, and oil drilling is one of the most specialized industrial activities. Large-scale production of sugarcane bagasse in Khuzestan Province creates an environmental opportunity to utilize this agricultural byproduct in different sections as a valuable byproduct. This study aimed to investigate the ability of the raw form of bagasse and its transformed structure in heavy metal fixation in drilling mud and to investigate the efficiency of crude bagasse, processed bagasse, and biochar adsorbents in removing heavy metals from the drilling mud residues of Ahvaz oil field.MethodsSampling of drilling mud waste from Mishan Geological Formation (MGF) and Aghajari Geological Formation (AGF) was done on a vibrating sieve. The treatments examined in this research include the contact time in six levels (30, 60, 90, 120, 150, and 180 min), amount of the adsorbent in three levels (0.1, 0.5, and 1 g), adsorbent type in three levels (crude bagasse, processed bagasse, and biochar), and the formation type in two levels (Aghajari and Mishan). After chemical digestion, the samples were placed in contact with crude bagasse, processed bagasse, and biochar according to the designed conditions. Then, the removal percentages of Ba, Ni, V, Cd, Fe, and Pb were calculated. Means were compared using Duncan’s test at the 1% level.Results and Discussion The results showed that the biochar adsorbent is the most efficient compared to other adsorbents. The maximum removal percentages of heavy metals Ba, Ni, V, Cd, Fe, and Pb by crude bagasse are 72.53%, 68.89%, 79.49%, 76.88%, 49.42%, and 85%, respectively. In addition, the results showed that the maximum removal percentages of heavy metals Ba, Ni, V, Cd, Fe, and Pb by crude bagasse are 81/72%, 83/89%, 86/67%, 83/44%, 64/41%, and 90.72%, respectively. The maximum efficiency of biochar for adsorbing heavy metals Ba, Ni, V, Cd, Fe, and Pb is 90.70%, 91.84%, 88.89%, 88.75%, 78.59%, and 97.75%, respectively. The maximum amount of heavy metals adsorbed by all adsorbents was 1 gr/L, and the adsorption efficiency increased by increasing the amount of the adsorbent from 0.2 to 1 gr/L. In examining the effect of contact time, the maximum removal percentage of heavy metals barium and cadmium was obtained in 120 min, nickel and lead in 90 min, and vanadium and iron in 60 min. After the above contact times, there was no increase in the maximum percentage of metal removal.

Publisher

Frontiers Media SA

Reference39 articles.

1. Treatment of oil well drill cuttings utilizing different binder options;Abdullah;Sci. J. Univ. Zakho,2022

2. Environmental aspect of oil and water-based drilling muds and cuttings from Dibi and Ewan off-shore wells in the Niger Delta, Nigeria Gbadebo;Adewole;Afr. J. Environ. Sci. Technol.,2010

3. Heavy metal toxicity, sources, and remediation techniques for contaminated water and soil;Ahmed;Environ. Technol. and Innov.,2022

4. Biochar as adsorbent for removal of heavy metal ions Cadmium (II), Copper (II), Lead (II), Zinc (II) from aqueous phase;Baltrėnaitė-Gedienė;Int. J. Environ. Sci. Technol.,2016

5. Human health risks associated with metals from urban soil and road dust in an oilfield area of Southeastern Algeria;Benhaddya;Arch. Environ. Contam. Toxicol.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3