Carbon dioxide partial pressures and emissions of the Yarlung Tsangpo River on the Tibetan Plateau

Author:

Bao Yufei,Hu Mingming,Li Shanze,Wang Yuchun,Wen Jie,Wu Xinghua,Sun Meng,Du Pengcheng

Abstract

Rivers are important routes for material and energy transport between terrestrial and marine ecosystems. Recent global-scale assessments of carbon (C) have suggested that C emission fluxes to the atmosphere are comparable to the fluvial C fluxes to the ocean. However, many previous studies only collected data from inland rivers in low altitude regions. Therefore, it remains unclear how plateau rivers affect C flux. In this study, 20 monitoring sites were set up along the Yarlung Tsangpo (YT) River on the Tibetan Plateau and detailed observations were carried out in the wet and dry seasons. The riverine CO2 fluxes exhibited significant seasonal patterns which ranged from 597.12 ± 292.63 μatm in the wet season to 368.72 ± 123.50 μatm in the dry season. The CO2 emission flux (FCO2) obtained from floating chamber method, ranging from 8.44 ± 6.94 mmol m−2 d−1 in sunmmer to 3.62 ± 6.32 mmol m−2 d−1 in winter, with an average value of 6.03 mmol m−2 d−1. Generally, the river was a weak carbon source with respect to the atmosphere. However, the pCO2 and FCO2 were much lower than that for other large rivers around the globe, which were obviously restrained by the weak microbial activities due to the low primary productivity and carbonate buffer activities in the carbonate background. Carbon loss via atmosphere exchange in the YT River on the plateau accounted for 2.2% and 10.6% of the riverine dissolved carbon fluxes (67.77 × 109 mol a−1) according to the floating chamber and thin boundary layer methods, respectively. The YT River probably acts as a “pipeline” to transport weathered nutrients from the plateau to downstream areas. Our results demonstrated the characteristics of a “weak outgassing effect and a high transport flux of carbon” for the plateau river, which is different from rivers on plains. Considering the global relevance of Tibetan Plateau, further studies with enhanced spatiotemporal resolution are needed to better understand the important role of plateau rivers on carbon budgets and climate change over both regional and global cycles.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3