Salient ingredients for direct water reclamation from treated municipal wastewater for potable reuse: Diepsloot Township case study

Author:

Nemadodzi Lufuno,Sikhwivhilu Keneiloe,Jalama Kalala,Moothi Kapil,Bambo Mokae,Mutanga Shingirirai,Siame John

Abstract

Across the world population growth, expansion of economic activities and climate change have become a concern for future water supply. To address the issue, many countries are investigating strategies to augment current water supplies. Water reclamation has been identified as a plausible sustainable solution to meet potable water supply demand, in turn achieving SDG 6.3. This study identifies some of the critical success factors for consideration of municipal waste water reclamation. This was undertaken in the growing township of Diepsloot, in Johannesburg (South Africa). Diepsloot is densely populated with over 350,000 people as recorded in 2022. As a result, water shortages are common due to insufficient bulk water facilities to supply the area. A direct potable water reclamation plant from treated municipal wastewater has been proposed to augment the water supply. Aqueous Material Balance (AqMB)®, a process modelling simulator software for water treatment processes to predict water quality and quantity, was used to design and simulate the water reclamation plant process. Our findings show that, the quantity and quality of water, as well as the choice of treatment technology are key. The simulations treatment process proposed here-in indicated successful removal of the contaminants to acceptable SANS 241:2015 drinking water standards. The variation in seasonal feed data did not show any difference in the performance of the proposed process. Furthermore, the plant has the potential to provide 109 L/day of clean water per person for a population of 350,000. Therefore, direct potable water reclamation shows great potential to augment current water supply to support growing populations where natural water sources are scarce.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3