One-year spatiotemporal variations of air pollutants in a major chemical-industry park in the Yangtze River Delta, China by 30 miniature air quality monitoring stations

Author:

Pang Xiaobing,Lu Yu,Wang Baozhen,Wu Hai,Shi Kangli,Li Jingjing,Xing Bo,Chen Lang,Wu Zhentao,Dai Shang,Zhou Wei,Cui Xuewei,Chen Dongzhi,Chen Jianmeng

Abstract

Fine chemical industrial park (FCIP) is a major source of atmospheric pollutants in China. A long-term high spatial resolution monitoring campaign on air pollutants had been firstly conducted in a major FCIP in Yangtze River Delta (YRD) from December 2019 to November 2020. The grid-based monitoring platform consisting of 30 miniature air quality monitoring stations (AQMSs) provided comprehensive coverage of a FCIP, and long-term monitoring studies solved the problem of lack of clarity about pollution sources in industrial parks. Overall, NO2 pollution was particularly high in the pharmaceutical industry, while TVOCs and O3 pollution were most serious in the textile dyeing industry, with PM pollution much higher in the metal smelting industry than in other industries, and in the leather industry, O3 pollution was relatively severe. The spatial and temporal variations of air pollutants showed that higher PM, CO and NO2 concentrations were revealed in winter while lower in summer due to better meteorological diffusion conditions. TVOCs concentrations were higher with an average of 1954 ppb in summer possibly due to their increased volatilization from their sources at higher ambient temperatures. O3 concentrations were at their peaks in spring (88.8 μg m−3) and early fall (78.5 μg m−3). The daily trends of O3 precursors (TVOCs and NO2) were clearly negatively correlated with O3, and they showed bimodal peaks due to anthropogenic activities, plant emissions, lowering of the mixed boundary layer, etc. The O3 formed in FCIP was judged to be NO2-limited during the monitoring period based on the ratios of NO2 to TVOCs. Therefore, the effective strategy to reduce O3 formation in FCIP is to decrease the ambient NO2 concentration. Based on Pearson correlation coefficients, it appeared that WS promoted O3 formation through long-term transport and that high air temperatures also contributed to O3 formation in the environment. It was also stated in the study that the closer the residential area is to the industrial sources, the more significant the correlation. Thus, the results of this study will also be helpful for policymakers to design pollutant control strategies for different industries to mitigate the impact of pollutants on human health.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3