Benefits of biobased fertilizers as substitutes for synthetic nitrogen fertilizers: Field assessment combining minirhizotron and UAV-based spectrum sensing technologies

Author:

Luo Hongzhen,Dewitte Kevin,Landschoot Sofie,Sigurnjak Ivona,Robles-Aguilar Ana A.,Michels Evi,De Neve Stefaan,Haesaert Geert,Meers Erik

Abstract

Recovery of biobased fertilizers derived from manure to replace synthetic fertilizers is considered a key strategy to close the nutrients loop for a more sustainable agricultural system. This study evaluated the nitrogen (N) fertilizer value of five biobased fertilizers [i.e., raw pig manure (PM), digestate (DIG), the liquid fraction of digestate (LFD), evaporator concentrate (EVA) and ammonia water (AW)] recovered from an integrated anaerobic digestion–centrifugation–evaporation process. The shoot and root growth of maize (Zea mays L.) under biobased fertilization was compared with the application of synthetic mineral N fertilizer, i.e., calcium ammonium nitrate (CAN). The non-invasive technologies, i.e., minirhizotron and unmanned aerial vehicle (UAV) based spectrum sensing, were integrated with the classic plant and soil sampling to enhance the in-season monitoring of the crop and soil status. Results showed no significant difference in the canopy status, biomass yield or crop N uptake under biobased fertilization as compared to CAN, except a lower crop N uptake in DIG treatment. The total root length detected by minirhizotron revealed a higher early-stage N availability at the rooting zone under biobased fertilization as compared to CAN, probably due to the liquid form of N supplied by biobased fertilizers showing higher mobility in soil under dry conditions than the solid form of CAN. Given a high soil N supply (averagely 70–232 kg ha−1) in the latter growing season of this study, the higher N availability in the early growing season seemed to promote a luxury N uptake in maize plants, resulting in significantly (p < 0.05) higher N concentrations in the harvested biomass of PM, LFD and AW than that in the no-N fertilized control. Therefore, the biobased fertilizers, i.e., PM, LFD, EVA and AW have a high potential as substitutes for synthetic mineral N fertilizers, with additional value in providing easier accessible N for crops during dry seasons, especially under global warming which is supposed to cause more frequent drought all over the world.

Funder

Framework Programme

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3