Effects of vegetation patchiness on ecosystem carbon and nitrogen storage in the alpine grassland of the Qilian Mountains

Author:

Abalori Theophilus Atio,Cao Wenxia,Atogi-Akwoa Weobong Conrad,Sam Faisal Eudes,Li Wen,Osei Richard,Wang Shilin

Abstract

Vegetation patchiness is common in degraded grasslands. Vegetation patchiness enhances the spatial variability of grassland soil organic carbon and total nitrogen. Stripped vegetation patches have a great impact on ecosystem carbon (C) and nitrogen (N) storage. Using field surveys, we examined the effects of patches on the ecosystem carbon and nitrogen storage of four typical alpine grass species patches (viz: Leymus secalinus, Koeleria pers, Stipa aliena, and Leontopodium nanum). The results indicated that ecosystem C, N, and respiration were significantly higher in intact vegetation patches than in stripped vegetation patches. Also, stripped vegetation patches recorded higher quantities of soil gravel content than the intact patches. In Leymus secalinus and Koeleria pers species patches, soil approximately contributed about 62% and vegetation about 38% to ecosystem carbon and nitrogen storage, whereas in Stipa aliena and Leontopodium nanum species patches, close to 80% of ecosystem carbon and nitrogen were found in the soil while close to 20% were stored in the vegetation. Soil total phosphorus (TP), total potassium (TK), available phosphorus (AP), soil microbial biomass carbon (MBC), and soil microbial biomass nitrogen (MBN) were higher in intact vegetation patches than in the stripped vegetation patches. Ecosystem carbon and nitrogen were observed to have a significant correlation with soil gravel content and vegetation productivity. Stripped vegetation patches resulted in decreased plant biomass input and an increased rate of soil erosion. We conclude that grassland patchiness resulted in the decline of ecosystem carbon and nitrogen storage due to a reduction in vegetation input and an increase in soil erosion. Grasslands are likely to have a higher possibility of serving as a C sink if the input of organic matter exceeds its output via sustainable management practices.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3