Hydropeaking by Small Hydropower Facilities Affects Flow Regimes on Tributaries to the Pantanal Wetland of Brazil

Author:

Figueiredo Juliane Stella M. C. de,Fantin-Cruz Ibraim,Silva Geovanna Mikaelle S.,Beregula Renato Leandro,Girard Pierre,Zeilhofer Peter,Uliana Eduardo Morgan,Morais Eduardo Beraldo de,Tritico Hans M.,Hamilton Stephen K.

Abstract

Hydroelectric facilities often release water at variable rates over the day to match electricity demand, resulting in short-term variability in downstream discharge and water levels. This sub-daily variability, known as hydropeaking, has mostly been studied at large facilities. The ongoing global proliferation of small hydropower (SHP) facilities, which in Brazil are defined as having installed capacities between 5 and 30 MW, raises the question of how these facilities may alter downstream flow regimes by hydropeaking. This study examines the individual and cumulative effects of hydropower facilities on tributaries in the upland watershed of the Pantanal, a vast floodplain wetland system located on the upper Paraguay River, mostly in Brazil. Simultaneous hourly discharge measurements from publicly available reference and downstream gage stations were analyzed for 11 reaches containing 24 hydropower facilities. Most of the facilities are SHPs and half are run-of-river designs, often with diversion channels (headraces). Comparison of daily data over an annual period, summarized by indicators of hydrological alteration (HA) that describe the magnitude, frequency, rate of change, and duration of flows, revealed differences at sub-daily scales attributable to hydropeaking by the hydropower facilities. Results showed statistically significant sub-daily HA in all 11 reaches containing hydropower facilities in all months. Discharge indicators that showed the highest percentage of days with increased variability were the mean rates of rise and fall, amplitude, duration of high pulses, maximum discharge, and number of reversals. Those that showed higher percentages of decreased variability included minimum discharge, number of high pulses, duration of stability, and number of low pulses. There was no correlation between HA values and physical characteristics of rivers or hydropower facilities (including installed capacity), and reaches with multiple facilities did not differ in HA from those with single facilities. This study demonstrates that SHPs as well as larger hydropower facilities cause hydrological alterations attributable to hydropeaking. Considering the rapid expansion of SHPs in tropical river systems, there is an urgent need to understand whether the ecological impacts of hydropeaking documented in temperate biomes also apply to these systems.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference50 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3