Adaptability of root morphology and growth of two forage grass species in response to salt stress

Author:

Zhang Yang,Zhang Yanfang,Zhang Rui,Song Yingying,Li Gang,Song Yayun,Ma Guochen,Guo Huizhen

Abstract

The cultivated Echinochloa frumentacea (Roxb.) Link and Echinochloa crusgalli (L.) Beauv. var. mitis (Pursh) Peter are two valuable grass species that are widely used in improving saline-alkali soil. Here we conducted a pot experiment combined with roots morphological analysis to investigate the adaptability of grass roots to saline stress environments, with cultivated E. frumentacea and E. crusgalli being subjected to salt treatments of 0 (CK), 100, 220, and 340 mmoL·L−1. Results indicated that E. frumentacea had longer primary roots with fewer root hairs and lower local branching density than E. crusgalli, with the root volume of E. frumentacea being 1.43 times greater than that of E. crusgalli. The aboveground biomass of both grasses decreased significantly (p < 0.05) with increasing salt concentrations, whereas the root-to-shoot ratio exhibited the opposite trend, suggesting the preferential allocation of photosynthetic products to the roots under salt stress. The total length, surface area, and tip number of fine roots and the growth of coarse roots (d > 2.00 mm) showed significant differences (p < 0.05) between the two grass species. Different concentrations of salt stress had inconsistent effects on the biomass and radial growth of roots for grasses. The cultivated E. frumentacea seems to adopt an adapt strategy of gradually increasing its root thickness, root hairs, and root density under increasing salt stress. E. crusgalli, on the other hand, employed a strategy of increasing root length, maintaining uniform thickness, and developing root hairs.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3