Nanofertilizers: A Cutting-Edge Approach to Increase Nitrogen Use Efficiency in Grasslands

Author:

Mejias J. H.,Salazar F.,Pérez Amaro L.,Hube S.,Rodriguez M.,Alfaro M.

Abstract

Nitrogen (N) is the most critical element limiting agricultural production at a global scale. Despite many efforts, the N use efficiency (NUE) in agriculture remains in a range of less than 50%. Reaching targeted crop yields has resulted in N overuse, which is an economic and environmental concern worldwide. The continuous exploration of innovative solutions has led to the synthesis of novel nanomaterials, resulting in a powerful tool for the development of new technological products. Nanofertilizers are one of the most promising engineered materials that are being tested, either for soil or foliar applications. Encouraging results have been obtained using nanofertilizers in different plant species, however, limited information has been reported about its use in grasslands. Commonly, N is applied to grassland soils as granular fertilizers, which may result in significant losses via surface runoff or leaching, ammonia (NH3) volatilization and N oxides (N2O, NO, NOx) emissions. Nitrogen nanofertilizers are expected to increase NUE by improving the effectiveness of N delivery to plants and reducing N losses to the environment. Information on the efficiency of the use of N nanofertilizers in grasslands species is scarce and the application strategies that can be used to avoid N losses are poorly understood. New scenarios of increasing economic and environmental constraints may represent an opportunity for N nanofertilizers application in grasslands. This article reviews its potential use as an innovative approach to improve NUE and reduce N losses to the wider environment, analyzing potential shortcomings and future considerations for animal food chains.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Instituto Nacional de Investigaciones Agropecuarias

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3