Trade-Offs in the Water-Energy-Ecosystem Nexus for Cascade Hydropower Systems: A Case Study of the Yalong River, China

Author:

Wu Xiufeng,Yu Lei,Wu Shiqiang,Jia Benyou,Dai Jiangyu,Zhang Yu,Yang Qianqian,Zhou Zehui

Abstract

The hydropower system’s water-energy-ecosystem nexus (WEEN) has gained particular focus in the last years. The water-use trade-offs between hydropower and ecosystem maintenance are complex and variable for cascade hydropower systems, leading to challenges in water resources management and sustainable development of hydropower. To understand the trade-off in the WEEN of cascade hydropower systems and their changes, a WEEN model using the multi-objective optimization approach is developed in this study, including maximizing cascade power generation, minimizing reservoir water footprint, and minimizing amended annual proportional flow deviation. These optimization objectives characterize the nexus’s water, energy, and ecosystem sectors. And the Pareto non-inferiority solutions are obtained by the third edition of the Non-dominated Sorting Genetic Algorithm. Also, we novelly propose an evaluation index called the Multi-objective Trade-off Index (MTI), a quantitative method with clear physical meaning to explore the trade-offs as revealed between different objectives by the solutions. A case study of the Yalong River, China, has shown that: 1) the larger the incoming water is, the more beneficial to the power generation and ecological benefits of the hydropower system; and 2) the trade-off degrees of the water sector with respect to energy-ecosystem and energy sector with respect to water-ecosystem decreases when the hydrological condition changes from wet to dry, while the degree of ecosystem sector with respect to water-energy increases. In general, the proposed MTI that quantifies trade-offs in the WEEN of cascade hydropower systems is efficient and feasible. Meanwhile, the MTI is also generic and can be applied to other multi-objective optimization problems.

Funder

Key Technologies Research and Development Program

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Jiangsu Province

Nanjing Hydraulic Research Institute

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3