Modeling climate change impact on dryland wheat production for increased crop yield in the Free State, South Africa, using GCM projections and the DSSAT model

Author:

Ajilogba Caroline F.,Walker Sue

Abstract

Introduction: The impact of climate change on food production in South Africa is likely to increase due to low rainfall and frequent droughts, resulting in food insecurity in the future. The use of well-calibrated and validated crop models with climate change data is important for assessing climate change impacts and developing adaptation strategies. In this study, the decision support system for agrotechnology transfer (DSSAT) crop model was used to predict yield using observed and projected climate data.Materials and Methods: Climate, soil, and crop management data were collected from wheat-growing study sites in Bethlehem, South Africa. The DSSAT wheat model (CROPSIM-CERES) used was already calibrated, and validated by Serage et al. (Evaluating Climate Change Adaptation Strategies for Disaster Risk Management: Case Study for Bethlehem Wheat Farmers, South Africa, 2017) using three wheat cultivar coefficients obtained from the cultivar adaptation experiment by the ARC-Small Grain Institute. The model was run with historical climate data for the eastern Free State (Bethlehem) from 1999 to 2018 as the baseline period. To determine the effects of climate change, the crop model simulation for wheat was run with future projections from four Global Climate Models (GCM): BCC-CSM1_1, GFDL-ESM2G, ENSEMBLE, and MIROC from 2020 to 2077.Results: The average wheat yield for the historic climate data was 1145.2 kg/ha and was slightly lower than the highest average yield of 1215.9 kg/ha from GCM ENSEMBLE during Representative concentration pathways (RCP) 2.6, while the lowest yield of 29.8 kg/ha was produced during RCP 8.5 (GCM GFDL-ESM2G). Model GFDL-ESM2G produced low yields (29.8–47.74 kg/ha) during RCP 8.5 and RCP 6.0, respectively. The yield range for GCM BCC-CSM1_1 was 770.2 kg/ha during RCP 2.6 to 921.68 kg/ha during RCP 4.5 and 547.84 kg/ha during RCP 8.5 to 700.22 kg/ha during RCP 2.6 for GCM MIROC.Conclusion: This study showed a declining trend in yield for future climate projections from RCP2.6 to RCP8.5, indicating that the possible impacts of higher temperatures and reduced rainfall in the projected future climate will slightly decrease wheat production in the eastern Free State. Adaptation measures to mitigate the potential impact of climate change could include possible changes in planting dates and cultivars. Using a crop model to simulate the response of crops to variations in weather conditions can be useful to generate advisories for farmers to prevent low yield.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3