Organic fertilizer has a greater effect on soil microbial community structure and carbon and nitrogen mineralization than planting pattern in rainfed farmland of the Loess Plateau

Author:

Wang Yi,Li Qianxue,Li Chunyue

Abstract

Agricultural ecosystem is the largest artificial ecosystem on Earth and provide 66% of the world’s food supply. Soil microorganisms are an engine for carbon and nutrient cycling. However, the driving mechanism of soil microbial community structure and carbon and nitrogen transformation mediated by fertilization and planting pattern in rainfed agricultural ecosystems is still unclear. The research was conducted at the Changwu Agricultural Ecology Experimental Station in Shaanxi Province, China. Seven different fertilization and planting pattern were designed. The Phosphate fatty acids (PLFAs) were used to explore the effects of fertilization and plating pattern on the soil microbial community structure and the relationship with soil carbon and nitrogen transformation. The results showed that there were significant differences in soil physical and chemical properties among treatments. Organic fertilizer significantly increased the soil carbon and nitrogen and decreased the soil pH. The contents of total PLFAs and microbial groups in the wheat and corn rotation treatment were the highest. Compared with the change in planting pattern, organic fertilizer had a greater impact on PLFA content and soil ecological processes. The soil microbial community structure has a significantly positive correlation with soil organic carbon (SOC), total carbon (TC), total nitrogen (TN), and total phosphorus (TP). Compared with applying NP fertilizer, applying organic fertilizer significantly increased the soil respiration rate and mineralized nitrogen content while decreasing the soil microbial biomass carbon (MBC). The correlation analysis showed that soil respiration was significantly positively correlated with SOC and TP, and mineralized nitrogen was significantly positively correlated with SOC, nitrate nitrogen, TN and MBC. Structural equation modeling (SEM) showed that the soil respiration rate was significantly positively affected by TC and negatively affected by SWC and explained 63%, whereas mineralized nitrogen was significantly positively influenced by TN and explained 55% of the total variance.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3