Low-intensity electromagnetic field as a new engineering oriented bioaugmentation strategy for anammox granules

Author:

Wang Zhibin,Liu Pengpeng,Zhou Jing,Ismail Sherif,Ahmad Shakeel,Awad Hanem M.,Ni Shou-Qing

Abstract

Improving the relative abundance of bacteria and their activity is still the basis for the efficient operation of anammox process. Here, biomagnetic effect was used to promote anammox granules. Batch test results show that the application of an electromagnetic field (EMF) with a strength of 0.09 μT increased the nitrogen removal performance of anammox by 32.44% while higher strength EMF of 0.20 and 0.25 μT inhibited the activity of anammox bacteria. Long-term experiment indicated that the addition of EMF with a strength of 0.09 μT greatly improved nitrogen removal performance of the granular sludge, especially the total nitrogen removal performance increased by 15.3%. After 120 days of reactor operation, the nitrogen loading rate was increased to 6.4 kg N/m3/d, and the total nitrogen removal rate of the reactors with and without EMF addition reached 4.92 kg N/m3/d and 4.25 kg N/m3/d, respectively. Throughout the experiment, the removal rate of NH4+-N and NO2-N of anammox reactor with 0.09 μT EMT addition was always higher than that without EMF addition. The high-throughput sequencing analysis showed that the proportion of Candidatus Brocadia in reactors with and without EMF addition were 21.3% and 15.8%, respectively. The application of EMF with an intensity of 0.09 μT increased the relative abundance of the main anammox bacteria. 70 kos were enriched under EMF conditions, including ko00780 (Biotin metabolism), ko00540 (Lipopolysaccharide biosynthesis), ko00590 (Arachidonic acid metabolism). 51 kos like ko03030 (DNA replication) decreased after EMF addition. This study demonstrates the feasibility of EMF to promote anammox and expands the application of EMF in wastewater treatment.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3