High temperatures and CO2 dissolution can cause nitrogen losses from urine stabilized with base

Author:

Randall Dyllon G.,Brison Antoine,Udert Kai M.

Abstract

Human urine is rich in valuable nitrogen which can easily be lost due to biological urea hydrolysis and subsequent ammonia volatilization. While this enzymatic reaction can be prevented by alkalizing the urine, recent studies suggest that chemical urea hydrolysis can result in substantial nitrogen losses when drying alkalinized urine at high temperatures. Furthermore, it was previously suggested that CO2 dissolution from the air used to evaporate water from alkalinized urine could result in a pH decrease to values which allows for biological urea hydrolysis and subsequent ammonia losses. This study aimed to determine the kinetics of chemical urea hydrolysis in alkalinized human urine and confirm the effect of CO2 dissolution with controlled laboratory experiments. We measured the change in urea concentration at different temperatures and pH values for real human urine and determined the corresponding rate constants for chemical urea hydrolysis. We showed that the rate constant increases as a function of temperature and that pH has a negligible effect on the rate of chemical urea hydrolysis in the high pH range of alkalized urine (>11). The rate constants for chemical urea hydrolysis in a saturated calcium hydroxide solution were found to be 0.00147 d−1, 0.00595 d−1, 0.0204 d−1 and 0.0848 d−1 for temperatures of 25°C, 40°C, 55°C and 70°C, respectively. The effect of CO2 dissolution on urea hydrolysis was determined by aerating human urine alkalinized with calcium hydroxide (Ca(OH)2). In order to represent biological urea hydrolysis, urease was added to the solution. The computer simulations of the experimental results showed that CO2 dissolution and the subsequent dissociation of carbonic acid to carbonate ions, bicarbonate ions and protons is the main cause of the pH decrease, but CaCO3 precipitation, and NH3 volatilization foster the pH decrease. However, biological urea hydrolysis prevents the pH from decreasing below 9. Residual undissolved Ca(OH)2 was shown to substantially delay the pH decrease. Overall, this work provides valuable insights into the mechanisms of urea hydrolysis in alkalinized urine during dehydration, which can be used to design more efficient decentralized sanitation systems and minimize nitrogen losses.

Funder

Bill and Melinda Gates Foundation

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3