Characterization of PM2.5-bound trace elements, source apportionment, and assessment of associated human health risks during summer and winter in Greater Noida, the National Capital Region of India

Author:

Kumar Vishnu,Yadav Mudit,Behera Sailesh N.

Abstract

To examine the trends of particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5) and its elemental constituents during two distinct seasons at a site away from the city center of Delhi and the National Capital Region (Delhi-NCR) of India, this unique study aimed at the development of source-receptor-effect linkages. This research paper presents results of occurrence, long-range transport (LRT), source apportionment, and human health impact assessment of 24 PM2.5-bound trace elements (Al, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Na, Ni, Pb, S, Se, Si, Te, Tl, Zn, and Zr). The concentration of PM2.5 during winter (296 ± 45 μg/m3) was significantly higher than in summer (114 ± 48 μg/m3) and exceeded 24 h Indian standard on most of the measurement days. The seasonal concentration ratios (winter/summer) of individual elements varied from 1.7 (Si) to 5.9 (Tl). The backward trajectory of air masses showed that transboundary transport of pollutants occurred in the downwind direction during winter, indicating that this remote site was affected by transported particulates and local activities. The principal component analysis–absolute principal component score (PCA-APCS) model confirmed five significant sources, vehicles (22.3%), soil/road dust (23.1%), coal combustion (20.9%), open burning (13.8%), and other industries (10.2%) responsible for particulate emission. The results from the multiple path particle dosimetry model (MPPD) showed higher deposition of particulates in the human respiratory system occurred during winter (44%) than in summer (40%). The elements with crustal sources of origin had a higher deposition fraction in the head region (0.27 for Si) compared to elements of anthropogenic sources (0.13 for Li). The excess lifetime carcinogenic risk (ELCR) under winter episodic events increased significantly at 128 × 10−6 compared to the summer non-episodic period at 41 × 10−6.

Funder

Department of Science and Technology, Ministry of Science and Technology

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3