A System Dynamics Modeling Approach for Estimation of Oily Waste Generation From Marine Oil Spill Response: A Case Study of an Oil Spill in Central Coast of British Columbia

Author:

Hosseinipooya Seyed Ashkan,Hu Guangji,Lee Kenneth,Li Jianbing,Ng Kelvin Tsun Wai,Vu Hoang Lan

Abstract

The understanding of waste generation is of critical importance for effective oily waste management in marine oil spill response operation. A system dynamics model was developed in this study to estimate the quantity of oily waste generated from marine oil spill response operations. Various aspects were considered, including weather conditions, spilled oil volume and characteristics, response time, and response methods. The types of oily waste include recovered oil, oily water, oily sorbents, oily personal protection equipment, and oily debris. The model was validated using data collected from an actual oil spill incident in British Columbia, Canada. The comparison of model estimation and observed results showed an average prediction accuracy of 86%. Sensitivity analysis was conducted to examine the impacts of two modeling parameters, including response arrival time and sorbent booms amount. Results of a case study indicated that initiation of response operations 5-h earlier could increased oil recovery by 26%. Furthermore, sensitivity analysis highlighted a 45% overuse of sorbents which resulted in the generation of unnecessary oily solid waste. Response surface methodology (RSM) analysis was applied to analyze the interaction effect of model parameters on model outputs. Results showed a significant interaction between sea temperature and response arrival time on recovered oil and between sorbent boom weight and sorbent booms usage rate on solid waste. The developed model can provide an effective tool for informed waste management decision-making related to marine oil spill response operations.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3