Testing woodchips for their efficiency in stimulating aquatic nutrient uptake at different experimental and spatial scales

Author:

Akbari Elmira,Matjašič Tjaša,Dittrich Anna-Lisa,Attermeyer Katrin,Hood-Nowotny Rebecca,Weigelhofer Gabriele

Abstract

IntroductionWoodchips as a source of particulate organic carbon (POC) are proposed as a nature-based solution to enhance nutrient uptake and retention in agricultural streams. However, the effective implementation of woodchips for nutrient removal in streams requires an advanced understanding of their potential and limits, considering their performance under various environmental conditions. This study tested the efficiency of woodchips on the uptake of soluble reactive phosphorus (SRP) and ammonium (N-NH4) across different experimental scales and complexity. We investigated whether the presence of woodchips can increase SRP and N-NH4 uptake in laboratory flumes under controlled conditions, outdoor flumes under semi-controlled conditions, and agricultural streams. Additionally, we examined how the effects of woodchips will change over time via a 6-week incubation in the outdoor flumes.MethodsThe woodchips were pre-colonized for four weeks to allow the growth of biofilms. We performed short-term nutrient additions without (control) and with (treatment) woodchips in all three experimental setups. Uptake parameters were determined via concentration changes over time in the laboratory flumes and concentration changes over travel distance in the outdoor flumes and the stream channels. The effects of woodchips on SRP and N-NH4 uptake rates were analyzed using an effect size model.ResultsWe found positive effects of woodchips on nutrient uptake only in the laboratory flumes but no or even negative effects in the outdoor flumes and the agricultural streams. Over the 6-week incubation in the outdoor flumes, we did not observe significant changes in the effects of woodchips on nutrient uptake.DiscussionThese findings highlight that considering experimental scales and influencing environmental conditions is crucial when testing the application of woodchips as nature-based solutions to mitigate nutrient loads in agricultural streams.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3