Further Development of Small Hydropower Facilities May Alter Nutrient Transport to the Pantanal Wetland of Brazil

Author:

Oliveira Marcia Divina de,Fantin-Cruz Ibraim,Campos Juliana Andrade,Campos Marcel Medina de,Mingoti Rafael,Souza Marcelo Luiz de,Figueiredo Daniela Maimoni de,Dores Eliana Freire Gaspar de Carvalho,Pedrollo Olavo,Hamilton Stephen K.

Abstract

Small hydropower (SHP) facilities, defined variably but usually by installed capacities of <10–50 MW, are proliferating around the world, particularly in tropical and subtropical regions. Compared to larger dams, SHPs are generally viewed as having less environmental impact, although there has been little research to support that assertion. Numerous SHPs have been built, and many more are in development or proposed, in rivers that drain into the Pantanal, a world-renowned floodplain wetland system located mostly in Brazil. The upland tributaries are important sources of nutrients to the Pantanal, affecting the biological productivity of downstream floodplains. This study presents measurements from upstream and downstream of 25 current hydropower facilities, most of which are SHPs, throughout the upland watersheds of the Upper Paraguay River basin to reveal how these facilities may affect the concentrations and transport of nutrients in rivers flowing to the Pantanal. Artificial neural network models estimated the impact of building 80 future SHPs on nutrient transport into the Pantanal, based on observations at current facilities as well as the spatial distribution of future facilities. Overall impacts of current hydropower facilities were not large, and in most cases were indistinguishable based on comparisons between upstream and downstream. The short water residence times of reservoirs associated with SHPs likely explain their tendency to have little or no effect on nutrient transport. However, model predictions for hydropower facilities that may be built in the future, many on rivers with higher discharge and sediment loads, point to significant reductions in overall TN (8%) and TP (29%) transport, with potential negative consequences for river and floodplain productivity. Negative impacts may be either because the rivers carry low nutrient concentrations and are thereby sensitive to oligotrophication, or they are particularly important overall nutrient sources supporting ecosystem productivity in downstream rivers and floodplains. Together with a parallel study of sediment transport, these results support recommendations that several river systems presently lacking dams in their lower reaches should be excluded from future hydropower development to maintain the nutrient and sediment supply to the Pantanal.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference51 articles.

1. Artificial Neural Networks in Hydrology. I: Preliminary Concepts.;J. Hydrol. Eng.,2000

2. Other organic phosphorus compounds;Andersen;Soil Components. Organic Components,1975

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3