From permafrost soil to thermokarst lake sediment: A view from C:N:P stoichiometry

Author:

Ren Ze,Li Xia,Zhang Cheng,Wang Qing,Fang Le,Cao Shengkui,Yu Jinlei

Abstract

Thermokarst lakes are formed as a result of thawing ice-rich permafrost, transforming vast permafrost soil into lake sediment and changing the biogeochemistry of carbon (C), nitrogen (N), and phosphorus (P). Degraded permafrost soil and thermokarst lake sediment are two distinct fates of pristine permafrost in the thermokarst processes. However, we do not clearly understand the differences and relationships between degraded permafrost soil and thermokarst lake sediment from a stoichiometric perspective. In this study, 44 thermokarst lakes across the Qinghai-Tibet Plateau were investigated to collect lake sediment and surrounding degraded permafrost soil. In general, C, N, and P concentrations as well as C:N, C:P, and N:P ratios in soil and sediment decreased with increasing latitude, while increased with increasing mean annual precipitation. The degraded permafrost soil had much higher C, N, and P concentrations and C:N:P stoichiometric ratios than the lake sediment, particularly for C. Moreover, the concentrations of C, N, and P, as well as the ratios of C:P and N:P in sediment showed significant positive relationships with their corresponding components in soil but with different slopes. Standard major axis regression showed allometric scaling relationships between C, N, and P. The C:N:P ratio was 269:18:1 in degraded permafrost soil and 178:15:1 in lake sediment. The results suggest that the process from pristine permafrost to lake sediment releases more C, N, and P than the process from pristine permafrost to degraded permafrost soil, and that C changes more profoundly than N and P. Moreover, thermokarst processes substantially change the elemental balance and decouple the C:N:P relationship between degraded permafrost soil and lake sediment, suggesting that the further transformation from degraded permafrost soil to lake sediment will lose more C, which can be intensified by increasing precipitation. The results enriched our understanding of the variations in C, N, and P biogeochemistry during thermokarst processes.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3