Stability of Acid Black 210 dye in Tannery Industry Effluent in Aqueous Solution Is Limited and Generates Harmful Subproducts

Author:

Christovam Elisa Maria,Franco Jefferson Honorio,Zocolo Guilherme Julião,Fusco Almeida Ana Marisa,Marcelino Monica Yonashiro,de Oliveira Danielle Palma,Boldrin Zanoni Maria Valnice

Abstract

The present work investigates the occurrence of the Acid Black 210 (AB210) dye and its subproducts in the tannery industry by analytical techniques. The AB210 is an important dye characterized by three azo groups as a chromophore and is one of the most used azo dyes in the tannery industry. The stability of AB210 in front of chlorination, sunlight exposition, and ambient conditions was investigated, as well as its occurrence and degradation products in the tannery wastewater. The stability study of AB210 showed a decrease in dye concentration of up to 45% after 14 days at room temperature. The exposure of the AB 210 by a solar simulator for 3 h showed discoloration of the dye. Furthermore, the chlorination of the AB210 caused a reduction of 25% in the intensity of the absorption band at the visible region after 300 s of treatment with sodium hypochlorite (NaClO). Studies based on high-performance liquid chromatography (HPLC-DAD), liquid chromatography-mass spectrometry (LC-MS/MS), and nuclear magnetic resonance (NMR) have indicated the occurrence of several harmful compounds such as benzene, cresol, naphthalene, phenol, 2-naphthylamine, and phenylacetic acid, and three aromatic amines, 2-naphthylamine, 2,6-dimethylaniline and 4-nitroaniline from the tannery industry. The cytotoxicity assay showed toxicity for the samples stored for a long period. Thus, the immortalized human keratinocyte (HaCAT) and 3T3 cells assays for the AB210 stored for 14 days showed 70% cell death in both strains evaluated. Our results demonstrated that the AB210 degradation is a great environmental concern due to increased toxicity for the body of living beings, especially for humans, as their biotransformation produces harmful compounds such as amines, which have been widely condemned by the International Agency for Research on Cancer.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3