Computer vision segmentation model—deep learning for categorizing microplastic debris

Author:

Royer Sarah-Jeanne,Wolter Helen,Delorme Astrid E.,Lebreton Laurent,Poirion Olivier B.

Abstract

The characterization of beached and marine microplastic debris is critical to understanding how plastic litter accumulates across the world’s oceans and identifying hotspots that should be targeted for early cleanup efforts. Currently, the most common monitoring method to quantify microplastics at sea requires physical sampling using surface trawling and sifting for beached microplastics, which are then followed by manual counting and laboratory analysis. The need for manual counting is time-consuming, operator-dependent, and incurs high costs, thereby preventing scalable deployment of consistent marine plastic monitoring worldwide. Here, we describe a workflow combining a simple experimental setup with advanced image processing techniques to conduct both quantitative and qualitative assessments of microplastic (0.05 cm < particle size <0.5 cm). The image processing relies on deep learning models designed for image segmentation and classification. The results demonstrated comparable or superior performance in comparison to manual identification for microplastic particles with a 96% accuracy. Thus, the use of the model offers an efficient, more robust, standardized, highly replicable, and less labor-intensive alternative to particle counting. In addition to the relative simplicity of the network architecture used that made it easy to train, the model presents promising prospects for better-standardized reporting of plastic particles surveyed in the environment. We also made the models and datasets open-source and created a user-friendly web interface for directly annotating new images.

Publisher

Frontiers Media SA

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3