Predicting the Settlement of Mine Waste Dump Using Multi-Source Remote Sensing and a Secondary Consolidation Model

Author:

Tabish Reza,Yang Zefa,Wu Lixin,Xu Zhihua,Cao Zhanpeng,Zheng Kaihui,Zhang Yanqing

Abstract

The settlement (or subsidence) of mine waste dump is likely to cause landslides, thereby imposing threats on the safety of human beings and other local properties. Hence, it is essential to accurately predict the settlement for the early-warning of settlement-induced geohazards. Traditional mechanical methods require in situ mechanical parameters and the geological structure of mine waste dump, narrowing their practical applications. In this paper, we proposed a remote sensing-based method for predicting the settlement of mine waste dump without the requirement for field observations. Firstly, the historical settlement and thickness of mine waste dump were measured by space-borne interferometric synthetic aperture radar (InSAR) and photogrammetry techniques, respectively. Secondly, the temporal evolution of the settlement of mine waste dump was described by a secondary consolidation model. Thirdly, the parameters of the secondary consolidation model were inverted based on the InSAR-measured historical settlements and photogrammetry-estimated thickness. Finally, the evolution trend of the settlement of the mine waste dump was predicted with the secondary consolidation model and its inverted parameters. The proposed method was tested over a mine waste dump in Weijiamao open-pit mine, China. The result shows that the root mean square error of the predicted time-series settlement is about 0.8 cm. The presented method will be beneficial to the assessment and early-warning of the settlement-related geohazards of mine waste dumps over a large area.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference48 articles.

1. A Review on Numerical Slope Stability Analysis;Ashutosh;Int. J. Sci. Eng. Tech. Res.,2013

2. InSAR Full-Resolution Analysis of the 2017-2018 M>6 Earthquakes in Mexico;Atzori;Remote Sensing Environ.,2019

3. Dump Slope Stability Analysis - A Case Study;Behera;J. Geol. Soc. India,2016

4. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms;Berardino;IEEE Trans. Geosci. Remote Sensing,2002

5. Synthetic Aperture Radar Interferometry to Measure Earth’s Surface Topography and its Deformation;Bürgmann;Annu. Rev. Earth Planet. Sci.,2000

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3