Real-world fuel-based and tillage area-based emission factors of agricultural machines during different tillage processes

Author:

Shen Xianbao,Yu Wenhan,Yao Zhiliang,Kong Lei,Wu Bobo,Xuan Kaijie,Cao Xinyue,Li Xin,Zhang Hanyu,Hao Xuewei,Zhou Qi

Abstract

Emissions of agricultural machines during tillage processes played an important role in severe seasonal pollution events in agricultural areas in China and cannot be ignored. In this study, the CO, NOX, HC and PM2.5 emissions of agricultural machines during real-world tillage processes were tested using a portable emission measurement system (PEMS), and their fuel-based and tillage area-based emission factors were calculated. The CO, NOX, HC and PM2.5 emissions were influenced by emission standards, engine rated power, tillage processes and crops. Only the CO, HC and PM2.5 fuel-based emission factors were reduced from China 0 to China II. For China III agricultural machines, the fuel-based emission factors were higher during plowing and tilling than during harvesting. The tillage area-based CO, NOX, HC and PM2.5 emission factors of corn tillage process were 11.85 ± 8.30, 53.21 ± 48.80, 3.46 ± 3.14 and 1.64 ± 1.33 kg/km2, respectively. The tillage area-based CO, NOX, HC and PM2.5 emission factors of wheat tillage process were 19.69 ± 21.50, 79.98 ± 63.22, 3.90 ± 2.96 and 1.61 ± 2.43 kg/km2, respectively. The tillage area-based emission factors of China III agricultural machines during plowing and tilling were higher than those during harvesting. The fuel consumption per unit tillage area can be used to provide a reference for the interconversion of the two emission factors in future studies. By comparing the fuel-based emission factors in this study with those in the Guidelines and other studies, we observed that the CO, HC and PM2.5 emissions of agricultural machines with corresponding emission standards may be overestimated and the NOX emissions may be underestimated in areas where wheat and corn are mainly grown. Moreover, the pollutant emissions of agricultural machines were regionally different. These results could help elucidate the pollution contribution of agricultural machines in China.

Funder

Beijing Municipal Natural Science Foundation

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference45 articles.

1. Quantifying air pollutant emission from agricultural machinery using surveys—a case study in anhui, China;Ai;Atmosphere,2021

2. Fuel consumption based exhaust emissions estimating from agriculture equipment in Beijing;Fan;J. Saf. Environ.,2011

3. Characteristics of agricultural tractors emissions under real-world operating cycle;Fu;Trans. Chin. Soc. Agric. Eng.,2013

4. Experimental investigation of iso-butanol/diesel reactivity controlled compression ignition combustion in a non-road diesel engine;Ganesh;Appl. Energy,2019

5. Experimental study on characteristics of emissions and fuel consumption for combines;Ge;Trans. Chin. Soc. Agric. Eng.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3