Decoupling of CO2, CH4, and N2O agriculture emissions in the EU

Author:

Andrei Jean Vasile,Avram Sorin,Băncescu Irina,Gâf Deac Ioan I,Gheorghe Carmen Adriana,Diaconu Anișoara Ionela

Abstract

This research addresses the problem of CO2, CH4, and N2O emissions in the EU for the 2008–2018 period, and their contributing factors, through extensive and complex analysis. The research incubated in the manuscript answers the question of whether new state members managed to catch up with old state members regarding technology innovation and mitigation of N2O emissions from agriculture activities. The methodology used includes Tapio decoupling index and the metafrontier non-radial Malmquist N2O emission performance index. The research considers short-term, medium-term, and long-term decoupling analyses. Results suggest a shift of decoupling status is worse for the 2013–2018 period compared to the 2008–2013 period which should concern low-carbon agriculture policy-makers. Also, it was noticed an increase in total-factor N2O emission performance for the 2008–2018 period. New state members managed to catch up with old state members regarding technology innovation and mitigation of N2O emissions from agricultural activities; however, not all countries managed to do so. For example, Romania has experienced an efficiency loss due to a technology change and from this perspective, Romania should address first managing N2O and CO2 emissions. The findings extend the traditional framework of investigating the effects of CO2, CH4, and N2O in agriculture and highlight the necessity of addressing environmental aspects from a broader perspective of the policymakers and in developing innovative decoupling indexes. The research investigation is reporting from a post-transition country by prioritizing the measures to be implemented.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3