Superposition Effects of Zinc Smelting Atmospheric Deposition on Soil Heavy Metal Pollution Under Geochemical Anomaly

Author:

Yu Enjiang,Liu Hongyan,Tu Yu,Gu Xiaofeng,Ran Xiaozhui,Yu Zhi,Wu Pan

Abstract

Guizhou Province is covered by a large area of carbonate rocks where, with a higher background of heavy metals under the geochemical anomaly, more than 3.6 × 105 ha of heavy metal–contaminated soil in the northwest area is related to historical indigenous zinc smelting. To explore the superposition effect of industrial source atmospheric deposition on soil, two watersheds were selected for study: 1) Maoshui reservoir watershed (MS), where there is a zinc smelting plant, and 2) Haishe lake watershed (HS), which was the control. We collected atmospheric depositions and soil for 3 years and analyzed Cadmium (Cd), lead (Pb), chromium (Cr), copper (Cu), nickel (Ni), and zinc (Zn) content. The results show that the heavy metals in the atmospheric deposition of the pollution watershed in MS were much higher than those in the control site, HS. The deposition fluxes of Cd, Pb, Cr, Ni, and Zn in MS were 27.8, 602, 145, 43.9, and 2,225 mg·m−2·a−1, respectively, and were 1.37–2.01 times higher than in HS. Soil heavy metals in MS were 1.01–5.69 times higher than in HS. The elevated concentrations were found focused from northeast to southwest around the plant but was distributed uniformly in HS. The average concentration of Cd, Pb, and Zn in the soil was 6.54, 67.4, and 264 mg·kg−1, respectively, in HS, which represents a high geochemical background even without pollution. After 13 years of deposition by prediction, the contribution of the atmospheric deposition on the soil in the zinc-smelting area was lowest, at 5.10%, for Ni, and highest, at 17.9%, for Cd. Principal component analysis of atmospheric deposition and soil heavy metals reflected that the pollution sources in MS were more diversification than those in HS. Zinc smelting atmospheric deposition showed superposition effects on the accumulation of heavy metals in soil under the geochemical anomaly in this region.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3