Simulation study of the multi-driver regulation strategy for an urban water pollution system

Author:

An Min,Huang Xiaokang,Jia Limin,Zhang Yue,Huang Jin,Khanal Ribesh

Abstract

Water resources serve as the foundation for high-quality urban development. As water pollution has become a major impediment to high-quality urban development, solving the problem of urban water pollution is critical for attaining high-quality urban growth. This research analyzes both point and non-point sources of pollution and constructs an urban water pollution simulation system model from four subsystems: population, industry, cultivated land, and livestock and poultry. This study selects 2020 as the base year and the current year’s development situation as the base scenario and then sets the other five simulation scenarios according to the research area development plan. Using Yichang data in this model, the research simulated and predicted the total amount of urban COD pollution under different scenarios. The results show that: 1) The difference between the simulation results of the constructed urban water pollution system and the 2010–2020 historical data is within 10%, which shows that the constructed system can analyze the reality. 2) Under the benchmark scenario, from 2020–2030, the total amount of urban COD shows a downward trend. The pollution from population and livestock subsystems are reduced by 20.20 and 35.29%, respectively, the industrial subsystem is increased by 40.60%, and the cultivated land subsystem is increased by 0.56%. 3) Compared with the benchmark scenario, the urban COD pollution in five scenarios has been reduced by 8,400, 42,000, 21,700, 100, and 72,300 tons, respectively, among which water pollution control measures in scenario five have the best effect. 4) Only by comprehensively controlling all pollution sources (scenario 5) can the total amount of urban COD pollution be controlled within 450,000 tons in 2030, which will be reduced by over 20% compared with 2020. An urban water pollution system can be used to simulate the source composition and total change amount of water pollution in the process of urban development, which is of great significance for government departments to provide accurate counter-measures for urban water pollution control and management decisions.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3