Stratospheric intrusion may aggravate widespread ozone pollution through both vertical and horizontal advections in eastern China during summer

Author:

Chang Fengyi,Li Jiandong,Li Nan,Liao Hong

Abstract

Stratospheric intrusion (SI) is an important source of tropospheric ozone (O3). Here, we used the online coupled Weather Research and Forecasting-Chemistry (WRF-Chem) model to simulate a typical SI event that occurred over eastern China on 15–19 July 2016 and investigate the impacts of SI on near-surface O3 pollution. The results show that the large-scale circulation of SI was characterized by a deep trough over central China and South Asia high and Western Pacific Subtropical high located to the east and west of the deep trough, respectively. With the evolution of the deep trough, the strong downdrafts behind the trough lead to O3-rich air injected into the lower troposphere across eastern China. By using a tracer tagging method in WRF-Chem, we quantified the SI contributed up to 6.5 ppb to the surface O3 concentration. According to the integrated process rate analyses, which were employed to quantify the contribution of different physical/chemical processes to O3, the advection process dominated variations in troposphere O3 with positive contribution ranging from 0.1 to 13.8 ppb h−1. As altitude decreases, the contribution of advection diminishes as the intensity of the SI gradually weakens. Although the vertical advection contributed limited O3 that directly reached the ground, we revealed that the SI has significant impact on near-surface O3 over a large territory of eastern China through regional transport by horizontal advection process. Below 691 m, the positive contribution of horizontal advection to O3 ranges from 1.6 to 13.4 ppb h−1. This study highlights the natural effect of SI on summertime O3 pollution in eastern China and will help the development of a future O3 pollution alert system.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3