Ensemble Temperature and Precipitation Projection for Multi-Factorial Interactive Effects of GCMs and SSPs: Application to China

Author:

Duan Ruixin,Huang Guohe,Li Yongping,Zheng Rubing,Wang Guoqing,Xin Baozhen,Tian Chuyin,Ren Jiayan

Abstract

Climate change has broadly impacted on the China areas. There will be severe challenges due to the variations of precipitation and temperature in the future. Therefore, a comprehensive understanding of the future climate change over China areas is desired. In this study, future annual precipitation and annual mean temperature under two SSPs over China areas were projected through multiple global climate models. Meanwhile, to explore the sources of uncertainty in projecting future climate change, the multi-factorial analysis was conducted through GCMs (five levels) and SSPs (two levels). This study can help us understand the possible changes in precipitation, temperature, and the potential extreme climate events over the China area. The results indicate that China would have more annual precipitation and higher annual mean temperature in the future. Compared with the historical period, the annual mean temperature would face a continuously increasing trend under SSPs. Regardless of SSP245 or SSP585, the growth rate of annual precipitation and annual mean temperature increase in the northern region (e.g., Northeast China, North China, and Northwest China) are higher than those in the southern parts (e.g., East China, South China, and Central China). The future temperature rise may increase the frequency of heat-related extreme climate events, which needs to be focused on in future research. Moreover, GCM was the main contributing factor to the sources of uncertainty in projecting future precipitation and SSP was the main factor for future temperature. Overall, climate change is an indisputable fact in China. The annual precipitation and annual mean temperature would increase to varying degrees in the future. Reducing the systemic bias of the climate model itself will undoubtedly be the top priority, and it would help to improve the projection and evaluation effects of relevant climate variables.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3